Home   |   Teaching   |   Research   |   Publications   |   Honors Mathematics and Statistics   |   Various

Books and Memoirs

  1. Derivationen auf kommutativen Banachalgebren (German). Schriftenreihe Math. Inst. Univ. Münster (3) 1 (1990).

  2. Lectures on Amenability. Lectures Notes in Mathematics 1774, Springer Verlag, 2002.

  3. (with A. T.-M. Lau; eds.) Banach Algebras and Their Applications. Contemporary Mathematics 363, American Mathematical Society, 2004.

  4. A Taste of Topology. Universitext. Springer Verlag, 2005.

  5. (with R. J. Loy and A. Sołtysiak; eds.) Banach Algebras 2009. Banach Center Publications 91, Polish Academy of Sciences, 2010.

  6. Amenable Banach Algebras. A Panorama. Springer Monographs in Mathematics, Springer Verlag, 2020. (Updates and errrata)

Papers in Refereed Journals

  1. Automatic continuity of derivations and epimorphisms. Pacific J. Math. 147 (1991), 365-374.

  2. Approximation in commutative Banach algebras with dense principal ideals. Arch. Math. (Basel) 58 (1992), 183-189.

  3. A functorial approach to weak amenability for commutative Banach algebras. Glasgow Math. J. 34 (1992), 241-251.

  4. (with M. Mathieu) Derivations mapping into the radical, II. Bull. London Math. Soc. 24 (1992), 485-487.

  5. Approximation in commutative Banach algebras with dense principal ideals, II. Rend. Circ. Mat. Palermo 41 (1992), 388-390.

  6. An epimorphism from a C*-algebra is continuous on the center of its domain. J. reine angew. Math. 439 (1993), 93-102.

  7. Range inclusions results for derivations on non-commutative Banach algebras. Studia Math. 105 (1993), 159-172.

  8. The structure of discontinuous homomorphisms from non-commutative C*-algebras. Glasgow Math. J. 36 (1994), 209-218.

  9. Homomorphisms from L1(G) for G ∈ [FIA]- ∪ [Moore]. J. Funct. Anal. 122 (1994), 25-51.

  10. When does continuity on the center imply continuity? Rend. Circ. Mat. Palermo 43 (1994), 133-140.

  11. When is there a discontinuous homomorphism from L1(G)? Studia Math. 110 (1994), 97-104.

  12. Locally compact groups which have the weakly compact homomorphism property. Proc. Amer. Math. Soc. 123 (1995), 3363-3364.

  13. Local spectral properties of convolution operators on non-abelian groups. Proc. Edinburgh Math. Soc. 39 (1996), 143-149.

  14. Intertwining operators over L1(G) for G ∈ [PG] ∩ [SIN]. Math. Z. 221 (1996), 495-506.

  15. Discontinuous homomorphisms from Banach *-algebras. Math. Proc. Cambridge Phil. Soc. 120 (1996), 703-708.

  16. Automatic continuity over Moore groups. Monatshefte Math. 123 (1997), 245-252.

  17. (with H. G. Dales) Discontinuous homomorphisms from non-commutative Banach algebras. Bull. London Math. Soc. 29 (1997), 475-479.

  18. Intertwining maps from certain group algebras. J. London Math. Soc. (2) 57 (1998), 433-448.

  19. (with E. Illoussamen) Topologically simple Banach algebras with derivation. Bull. Austral. Math. Soc. 60 (1999), 153-161.

  20. (with F. Ghahramani and G. A. Willis) Derivations on group algebras. Proc. London Math. Soc. (3) 80 (2000), 360-390.

  21. (with R. J. Loy, C. J. Read, and G. A. Willis), Amenable and weakly amenable Banach algebras with compact multiplication. J. Funct. Anal. 171 (2000), 78-114.

  22. Automatic continuity and second order cohomology. J. Austral. Math. Soc. A 68 (2000), 231-243.

  23. Banach space properties forcing a reflexive, amenable Banach algebra to be trivial. Arch. Math. (Basel) 77 (2001), 265-272.

  24. Amenability for dual Banach algebras. Studia Math. 148 (2001), 47-66.

  25. (with R. Choukri and E. Illoussamen) Gelfand theory for non-commutative Banach algebras. Quarterly J. Math. Oxford 53 (2002), 161-172.

  26. The flip is often discontinuous. J. Operator Theory 48 (2002), 447-451.

  27. Operator Figà-Talamanca-Herz algebras. Studia Math. 155 (2003), 153-170.

  28. Connes-amenability and normal, virtual diagonals for measure algebras, I. J. London Math. Soc. 67 (2003), 643-656.

  29. Connes-amenability and normal, virtual diagonals for measure algebras, II. Bull. Austral. Math. Soc. 68 (2003), 325-328.

  30. The operator amenability of uniform algebras. Canad. Math. Bull. 46 (2003), 632-634.

  31. (with O. Yu. Aristov and N. Spronk) Operator biflatness of the Fourier algebra and approximate indicators for subgroups. J. Funct. Anal. 209 (2004), 367-387.

  32. (with N. Spronk) Operator amenability of Fourier-Stieltjes algebras. Math. Proc. Cambridge Phil. Soc. 136 (2004), 675-686.

  33. (with A. Lambert and M. Neufang) Operator space structure and amenability for Figà-Talamanca-Herz algebras. J. Funct. Anal. 211 (2004), 245-269.

  34. Applications of operator spaces to abstract harmonic analysis. Expo. Math. 22 (2004), 317-363.

  35. Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), 124-144.

  36. (with B. E. Forrest) Amenability and weak amenability of the Fourier algebra. Math. Z. 250 (2005), 731-744.

  37. Representations of locally compact groups on QSLp-spaces and a p-analog of the Fourier-Stieltjes algebra. Pacific J. Math. 221 (2005), 379-397.

  38. A Connes-amenable, dual Banach algebra need not have a normal, virtual diagonal. Trans. Amer. Math. Soc. 358 (2006), 391-402.

  39. The amenability constant of the Fourier algebra. Proc. Amer. Math. Soc. 134 (2006), 1473-1481.

  40. Cohen-Host type idempotent theorems for representations on Banach spaces and applications to Figà-Talamanca-Herz algebras. J. Math. Anal. Appl. 329 (2007), 736-751.

  41. (with M. Neufang) Harmonic operators: the dual perspective. Math. Z. 255 (2007), 669-690.

  42. (with N. Spronk) Operator amenability of Fourier-Stieltjes algebras, II. Bull. London Math. Soc. 39 (2007), 194-202.

  43. (with B. E. Forrest and N. Spronk) Operator amenability of the Fourier algebra in the cb-multiplier norm. Canadian J. Math. 59 (2007), 966-980.

  44. (with M. Daws) Can B(lp) ever be amenable? Studia Math. 188 (2008), 151-174. - Erratum. Studia Math. 195 (2009), 297-298.

  45. Characterizations of compact and discrete quantum groups through second duals. J. Operator Theory 60 (2008), 415-428.

  46. (with M. Neufang) Column and row operator spaces over QSLp-spaces and their use in abstract harmonic analysis. J. Math. Anal. Appl. 349 (2009), 21-29.

  47. Biflatness and biprojectivity of the Fourier algebra. Arch. Math. (Basel) 92 (2009), 525-530.

  48. Uniform continuity over locally compact quantum groups. J. London Math. Soc. 80 (2009), 55-71.

  49. (with M.Daws) Reiter's properties (P1) and (P2) for locally compact quantum groups. J. Math. Anal. Appl. 364 (2010), 352-365.

  50. B(lp) is never amenable. J. Amer. Math. Soc. 23 (2010), 1175-1185.

  51. Co-representations of Hopf-von Neumann algebras on operator spaces other than column Hilbert space. Bull. Austral. Math. Soc. 82 (2010), 205-210.

  52. Completely almost periodic functionals. Arch. Math. (Basel) 97 (2011), 325-331.

  53. (with B. E. Forrest) Norm one idempotent cb-multipliers with applications to the Fourier algebra in the cb-multiplier norm. Canadian Math. Bull. 54 (2011), 654-662.

  54. Factorization of completely bounded maps through reflexive operator spaces with applications to weak almost periodicity. J. Math. Anal. Appl. 385 (2012), 477-484.

  55. (with S. Öztop and N. Spronk) Beurling-Figà-Talamanca-Herz algebras. Studia Math. 210 (2012), 117-135.

  56. (with A. Viselter) Ergodic theory for quantum semigroups. J. Lond. Math. Soc. 89 (2014), 941-959.

  57. (with F. Uygul) Connes-amenability of Fourier-Stieltjes algebras. Bull. Lond. Math. Soc. 47 (2015), 555-564.

  58. (with A. Viselter) On positive definiteness over locally compact quantum groups. Canad. J. Math. 68 (2016), 1067-1095.

  59. (with B. E. Forrest and K. Schlitt) Operator ultra-amenability. Arch. Math. (Basel} 108 (2017), 465-471.

Papers in Conference Proceedings

  1. The structure of contractible and amenable Banach algebras. In: E. Albrecht and M. Mathieu (eds.), Banach Algebras '97, pp. 415-430. Walter de Gruyter, Berlin, 1998.

  2. (with E. Albrecht et al.) List of open problems. In: E. Albrecht and M. Mathieu (eds.), Banach Algebras '97, pp. 549-560. Walter de Gruyter, Berlin, 1998.

  3. Abstract harmonic analysis, homological algebra, and operator spaces. In: K. Jarosz (ed.) Function Spaces, pp. 263-274. Contemporary Mathematics 328, American Mathematical Society, 2003.


  4. (Non-)amenability of B(E). In: R. J. Loy, V. Runde, and A. Sołtysiak (eds.) Banach Algebras 2009, pp. 339-351. Banach Center Publications 91, Polish Academy of Sciences, 2010.

In Preparation

  1. Generalized notions of amenability for C*-algebras.

  2. Operator ultrapowers of operator spaces

  3. Amenability, co-amenability, and operator amenability for locally compact quantum groups of Kac type.

  4. Amenability of the Fourier algebra in the cb-multiplier norm.

Other Work

  1. An amenable, radical Banach algebra. arXiv:math/0202307 (1996).

  2. The Banach-Tarski paradox or What mathematics and miracles have in common. π in the Sky 2 (2000), 13-15.

  3. Weierstraß. π in the Sky 4 (2001), 7-9.

  4. Noether. π in the Sky 5 (2002), 20-22.

  5. Why I don't like "pure mathematics". π in the Sky 7 (2003), 30-31.

  6. Why proof? π in the Sky 11 (2008), 12-15.

  7. A new and simple proof of Schauder's theorem. arXiv:1010.1298 (2010).

  8. Why Banach algebras? CMS Notes 44 (2012), 10-12.

Last update: May 21, 2020